CHEMISTRY STUDY MATERIALS FOR CLASS 9

(NCERT based Revision of Atoms and molecules) GANESH KUMAR DATE: 14/07/2020

NUMERICAL PROBLEMS BASED ON MOLE CONCEPT

- Question12. Calculate the number of sulphate (SO_4^{2-}) ions in 100 ml of 0.001 M H_2SO_4 solution.
- Solution12. Molarity = No. of moles of solute/ Volume of solution in Liters => No. of moles of solute (H_2SO_4) = Molarity × volume of solution in Liters = 0.001×0.1

1 molecule of H₂SO₄ contains 1 SO₄²⁻ ion

=> 0.0001 mole of H₂SO₄ contains 0.0001 mole SO₄²

: No. of sulphate (SO_4^{2-}) ions = 0.0001 × 6.022 × 10^{23}

 $= 6.022 \times 10^{19}$

= 0.0001

- Question13. Calculate the number of atoms in 100 u of He.
- Solution 13. Atomic mass of He = 4 u

So, mass of one He atom = 4 u

 \therefore No. of atoms in 100 u of He = 100/4 = 25 He atoms.

Question14. If a mole were to contain 1x 10²⁴ particles, what would be the mass of

(i) One mole of oxygen, and (ii) a single oxygen molecule?

Solution14. Mass of one mole of oxygen molecule (O_2) = molecular mass in gram = 32 g.

Mass of a single oxygen molecule = $32/1 \times 10^{24}$ = 3.2×10^{-23} a.

Question15. Calculate the standard molar volume of oxygen gas. The density of O₂ gas at NTP is 1.429g/L.

Solution15. Standard molar volume = volume occupied by 1 mole (i.e., 32g) O₂ gas = Mass/density

Question16. Calculate the mass of 1 mole He gas. The density of He gas is 1784g/L.

Solution 16. Mass of 1 mole He = Density × Standard molar volume

$$= 0.1784 \times 22.4 \approx 4g$$
.

Question 17. A metal M of atomic mass 54.94 has a density of 7.42g/cc.

Calculate the apparent volume occupied by one atom of the metal.

Solution 17. Mass of 1 mole metal atoms = 54.94g

=> Mass of 1 metal atom $= 54.94/6.022 \times 10^{23}$ g

$$= 9.12 \times 10^{23} g$$

Volume occupied by one metal atom= Mass of one metal atom/density

$$=9.12\times10^{23}/7.42$$

$$= 1.23 \times 10^{23} \text{ cc.}$$

Question18. Calculate the number of moles, and number if atoms of H, S, and O in 5 mole of H₂SO₄.

Solution 18. 1 mole of H_2SO_4 contains 2 mole of H, 1 mole of S, and 4 mole of O => 5 mole of H_2SO_4 contains 10 mole of H = $10 \times 6.022 \times 10^{23}$

$$= 6.022 \times 10^{24} \text{ H atoms}$$

5 mole of S = $5 \times 6.022 \times 10^{23}$

 $= 3.011 \times 10^{24} \text{ S atoms}$

20 mole of $O = 20 \times 6.022 \times 10^{23}$

$$= 1.204 \times 10^{25}$$
 O atoms.

Question 19. Calculate the number of oxygen atoms and its mass in 50 g of CaCO₃.

Solution19. Molecular mass of CaCO₃= 40+12+3×16

No. mole of $CaCO_3 = 50g/100g$

= 0.5

0.5 mole of CaCO₃ contains 1.5 moles of oxygen atoms

No. of oxygen atoms = $1.5 \times 6.022 \times 10^{23}$

 $= 9.033 \times 10^{23}$ atoms

Mass of Oxygen atoms = 1.5×16

= 24 g.

Question 20. Calculate the number of atoms of each element in 122.5 g of KClO₃.

Solution 20. Molecular mass of $KCIO_3 = 39 + 35.5 + 3 \times 16 = 122.5$

No. of mole of $KCIO_3 = 122.5g/122.5g$

= 1 mole

1 mole of KCIO₃ contains

1 mole of K = 6.022×10^{23} K atoms

1 mole of CI = 6.022×10^{23} CI atoms

3 mole of O = $3 \times 6.022 \times 10^{23}$

 $= 1.806 \times 10^{24} \text{ O atoms}.$

Question 21. Calculate the total number of electrons present in 1.6 g of CH₄.

Solution 21. Molecular mass of $CH_4 = 12+4\times1$

= 16

Moles of $CH_4 = 1.6/16$

=0.1

No. of electron in 1 molecule of $CH_4 = 6+4$

= 10 electrons

Total no. of electrons = $0.1 \times 6.022 \times 10^{23} \times 10^{23}$

 $= 6.022 \times 10^{23}$ electrons.
